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Cover: View of a study site in the Ladon basin, Mars, highlighting the imaging capabilities of the Colour and Stereo Surface Imaging System (CaSSIS) 
onboard the ExoMars Trace Gas Orbiter spacecraft. Joint analysis with other datasets by Mège et al. suggests that a stack of ultramafic lava flows (dark and 
light-tone blue) has been altered during the Upper Hesperian to Lower Amazonian by serpentinization and carbonation (listwanite, yellow-orange) in 
response to hydrothermal processes, and by kaolinization in groundwater underneath (bright horizon). See the complete paper, https://doi.org/ 
10.1029/2022JE007223, for details.
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Abstract  The evolution of the Ladon basin has been marked by intense geological activity and the 
discharge of huge volumes of water from the Martian highlands to the lowlands in the late Noachian and 
Hesperian. We explore the potential of the ExoMars Trace Gas Orbiter/Color and Stereo Surface Imaging 
System color image data set for geological interpretation and show that it is particularly effective for geologic 
mapping in combination with other data sets such as HiRISE, Context, and Compact Reconnaissance Imaging 
Spectrometer for Mars. The study area displays dark lobate flows of upper Hesperian to early Amazonian age, 
which were likely extruded from a regional extensional fault network. Spectral analysis suggests that these 
flows and the underlying rocks are ultramafic. Two distinct altered levels are observed below the lobate flows. 
The upper, yellow-orange level shows hundreds of structurally controlled narrow ridges reminiscent of ridges of 
listwanite, a suite of silicified, fracture-controlled silica-carbonate rocks derived from an ultramafic source and 
from serpentine. In addition to serpentinite, the detected mineral assemblages may include chlorite, carbonates, 
and talc. Kaolin minerals are detected in the lower, white level, which could have formed by groundwater 
alteration of plagioclase in the volcanic pile. Volcanism, tectonics, hydrothermal activity, and kaolinization are 
interpreted to be coeval, with hydrothermal activity and kaolinization controlled by the interactions between 
the aquifer and the hot, ultramafic lobate flows. Following our interpretations, East Ladon may host the first 
listwanite ridges described on Mars, involving a hydrothermal system rooted in a Hesperian aquifer and 
affecting ultramafic rocks from a magmatic source yet to be identified.

Plain Language Summary  The payload of the ExoMars Trace Gas Orbiter spacecraft includes the 
Color and Stereo Surface Imaging System (CaSSIS) camera, which retrieved its first Mars images in 2018. Its 
strength lies in the combination of spatial and spectral resolution with stereo capabilities made possible by a 
rotating platform. This study investigates the complementarity between the color images of CaSSIS and other 
data sets from the Mars Reconnaissance Orbiter: the HiRISE camera, the Context camera, and the Compact 
Reconnaissance Imaging Spectrometer for Mars (CRISM) hyperspectral imager. In this study, we show how 
CaSSIS readily reveals composition variations at the surface, such as dark flows and light-toned zones in the 
underlying rocks. Using CRISM and CaSSIS data, their composition can be determined. It is found that the 
flows are probably volcanic and that the lighter-toned rocks are hydrothermally altered versions of these rocks. 
This alteration takes the form of listwanite, mineral assemblage found on Earth in mantle rocks transported 
to the continental surface after subduction, such as the Oman ophiolites. Our findings make the late geologic 
history of the eastern Ladon basin singularly complex, a unique groundwater-controlled environment conducive 
to the formation of base and rare metal deposits.
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Key Points:
•	 �We evaluate the contribution of Color 

and Stereo Surface Imaging System 
(CaSSIS) color images in the Ladon 
basin where high-resolution data 
sets (HiRISE, Context, and Compact 
Reconnaissance Imaging Spectrometer 
for Mars [CRISM]) are available

•	 �Data analysis suggests Amazonian 
ultramafic volcanism and 
listwanitization in East Ladon

•	 �CaSSIS color images fill the gap 
between color HiRISE images and 
CRISM hyperspectral data
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1.  Introduction
Similar to Earth (e.g., Catling & Zahnle, 2020), water has been on Mars since the beginning of the planet's history 
(Carr & Head, 2015). In contrast to Earth, where the fate of water has been controlled by plate amalgamation, 
recycling and related processes (e.g., Korenaga et al., 2017), the Martian crust may have been the locus of the 
main water reservoir until the end of the Noachian, exchanging with the glaciated surface (Carr & Head, 2015), 
before a significant fraction of the existing water moved to the surface, possibly creating a large polar Hesperian 
ocean (Carr & Head, 2019; Schmidt et al., 2022), now partly back to the aquifers and partly releasing its oxygen 
(e.g., Lillis et al., 2017) and hydrogen (e.g., Stone et al., 2020) to space. The existence of aquifers is attested by 
the landforms that result from groundwater release, such as the outflow channels. Most of these flood-carved 
channels are thought to have formed during the Hesperian by aquifer depressurization (e.g., Marra et al., 2015), 
with discharges continuing into the early and middle Amazonian (e.g., Rodriguez et  al.,  2015). This intense 
hydrological activity may have resulted in the widespread formation or fluvial transportation and resedimentation 
of smectites (Weitz et al., 2022). Some flooding events are even younger and are associated with the locations 
of major late Amazonian volcanic activity (Hargitai & Gulick,  2018). Another clue to groundwater activity 
may be the deformation of floor-fractured craters (FFCs). Although FFCs are also observed on the Moon (e.g., 
Jozwiak et al., 2014), indicating that water is not strictly necessary, the presence of buried ice (Schumacher & 
Zegers, 2011) or a water table (Sato et al., 2010) is thought to be a potentially critical factor for FFC formation on 
Mars. Their frequent association with major discontinuities such as the planetary dichotomy boundary and with 
chaotic terrains and outflow channels (Bamberg et al., 2014) suggests that groundwater flow may frequently be 
involved. It has also been suggested that volcanic activity may be the cause; the dichotomy boundary is likely a 
site of past intense crustal fracturing and magmatic activity (Gurgurewicz et al., 2022), and aquifer pressurization 
leading to the triggering of outflow channels is more readily achieved when the crust is heated by some under-
lying magma body. For this reason, similar to the Moon (Jozwiak et al., 2014), magma intrusion and subsequent 
crater floor uplift might be a cause for FFC formation even in the absence of groundwater or ice (Bamberg 
et al., 2014). Luzzi et al. (2021) suggested that FFC fracturing could result from a succession of magmatic infla-
tion and deflation episodes.

A number of FFCs are located in the Ladon basin area (Bamberg et al., 2014), indicating that Ladon is a suitable 
place to investigate floor fracturing, volcanic activity, and groundwater or ground ice. Large volumes of sedi-
ments were deposited in the Ladon basin (Figure 1) during the late Noachian and Hesperian periods (Grant & 
Parker, 2002) and transported from the surrounding Noachian terrains through a vast and multiphase drainage 
system. Groundwater flow is thought to play an important role in the evolution of the region in connection with 
the formation of several nearby chaotic terrains. The basin underwent later widespread extensional fracturing 
and more sparsely, contractional deformation (Irwin & Grant, 2013). This deformation is in the form of wrinkle 
ridges, that is, a broad ridge with a wrinkle on one side reported forming exclusively in stratified lava flows 
(Schultz, 2000).

Onboard ESA's ExoMars Trace Gas Orbiter, the Color and Stereo Surface Imaging System (CaSSIS; European 
Space Agency, 2021) is particularly adapted to geologic mapping due to both its color capabilities and pixel size 
(4.6 m) imaging capabilities (Thomas et al., 2017, 2022). One of the major characteristic features of the Ladon 
basin is the polygonal faulting (Irwin & Grant, 2013), leading to the formation of deep troughs that cut the upper 
stratigraphy of the basin deposits. Several CaSSIS images of the Ladon basin show such fractures and grabens 
but the regional pattern is best seen in regional mosaics (Figure 2). These sites were targeted to test the spectral 
capabilities of the four filters of CaSSIS blue-green (BLU), broad red (PAN), and two near-infrared (RED, NIR). 
In one particular location of the basin (Figure 1c), two overlapping CaSSIS color images were taken (without 
stereo acquisition) and overlapped four HiRISE images, one CRISM cube, and a Context (CTX) stereo pair. This 
area in the eastern sector of the Ladon basin has been the main focus of this study.

The area covered by the CaSSIS images is marked by a network of faults, dark lobate units, and light-toned 
patches. It is surrounded by several FFCs. An interpretation of the fracture pattern and its significance in relation 
to the broad context of the basin is proposed and a morphological description of the rock units is given, supported 
by HiRISE images and topographic information. Compositional information is retrieved using both CRISM 
and CaSSIS data. A detailed mineralogical analysis is conducted at three site of the CRISM cube, including 
spectral ratioing and band absorption analysis. Spectral cluster analysis applied to CaSSIS images reveal useful 
details in discriminating between pristine rocks and their alteration products. The interpretations are put into a 
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chronological perspective with a new crater retention age calculation. Finally, a synthesis is provided in the form 
of a cross-section representative of the East Ladon site, highlighting the structure, stratigraphy, and alteration 
systems in the study site.

2.  Data Sets and Methods
2.1.  CaSSIS Color Composite Mosaic Interpretation and Compositional Analysis

CaSSIS color images have a ground pixel size of ∼4.6  m/pixel, with a swath width of 7–9  km and length 
of 40–50  km. The CaSSIS camera is equipped with four color channels in the blue (BLU), red (PAN), and 
near-infrared (RED, NIR) ranges (Thomas et al., 2017). The CaSSIS acquisitions can be planned both in stereo 
configuration and in single acquisition mode, with 1–4 color filters. The vast majority of observations in the 
Ladon basin so far are single acquisitions with less than four filters, usually 2 or 3. Visualizing the NIR-PAN-BLU 
and RED-PAN-BLU band combinations as RGB images has proven especially useful to render rock composition 
contrasts and, for instance, distinguish between pristine bedrock and alteration products.

A survey of polygonal fractures in Ladon basin based on the available CaSSIS images was first carried out 
(Table 1). We then focused on an area in East Ladon where a mosaic of two CaSSIS images was targeted at a 

Figure 1.  MOLA context of the Ladon basin and the footprints of studied Color and Stereo Surface Imaging System 
(CaSSIS) images. (a) Panel location of Ladon Basin in the equatorial region of Mars; (b) physiography of Ladon Basin. 
Basemap is MOLA MEGDR gridded data at 463 m/pixel draped in transparency onto THEMIS infrared (IR) daytime 
infrared at 100 m/pixel; and (c) footprints of the image data and Compact Reconnaissance Imaging Spectrometer for Mars 
cube coverage at the study site, in the context of the geologic map by Irwin and Grant (2013). Note the floor-fractured craters 
distributed around the study site.
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location that benefits from excellent CTX, HiRISE, and CRISM coverage (Figure 1c, Table 2), making it possible 
to optimally investigate the synergy of these data sets.

In East Ladon, CaSSIS images were used qualitatively to identify and map boundaries between geologic terrains. 
Semiquantitatively, the intensity of alteration can be evaluated using the CaSSIS images through the K-mean 
spectral clustering technique (Marzo et al., 2006), which makes it possible to find the intrinsic number of clusters 
characterizing the data set itself, using the Caliński-Harabasz criterion (Caliński & Harabasz, 1974). The result-
ing clusters are identified by an average spectrum and its associated variability. Since the geographic information 
is maintained in the process, we can directly compare the spectral clusters with the units and features identified  in 
the geological map. This process has already been applied and tested on various Solar System bodies, such as 
Mars (Marzo et al., 2006, 2008, 2009), Phobos (Pajola et al., 2018), and Mercury (Lucchetti et al., 2018, 2021; 
Pajola et al., 2021).

2.2.  CTX Images

The broader context is provided by CTX (Malin et al., 2007) panchromatic images at ∼6 m/pixel. We gener-
ated a controlled CTX mosaic by selecting observations with similar illumination conditions (i.e., incidence 
angle ∼60°). We processed the raw CTX image files from the Planetary Data System (PDS) with the Integrated 
Software for Imagers and Spectrometers 3 (ISIS3) (Torson & Becker, 1997) and created a network of control 
points that locate the same morphology or feature in overlapping images. In this way, precise coregistration of 
images and almost seamless stitching are possible. To refine this product, each CTX image was also equalized 
with respect to the others to obtain consistent grayscale values throughout the mosaic. Additionally, a blending 
algorithm with a buffer width of 100 pixels was used to avoid creating seams at the edges of individual images.

Figure 2.  Map of fractures and graben patterns inside the Ladon basin. The floor fractured craters (FFC), characterized 
by polygonal fractures, are indicated. The white boxes highlight the location of the insets of the Color and Stereo Surface 
Imaging System images displayed in Figures 3–5. Basemap is the THEMIS IR daytime infrared mosaic at 100 m/pixel 
colorized with a partially transparent overlay over the MOLA MEGDR gridded data at 463 m/pixel.
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2.3.  CTX Digital Terrain Model Generation and Analysis

We generated a CTX digital terrain model (DTM) using a combination of ISIS3 and the BAE Systems photo-
grammetric package SOftCopy Exploitation Toolkit (SOCET SET), following the method of Kirk et al. (2008). 
The CTX DTM was tied to Mars Orbiter Laser Altimeter (MOLA) shot points and exported with a post spacing of 
20 m/pixel. The HDEM SfS method (High-resolution Digital Elevation Model from Shape-from-Shading, Douté 
& Jiang, 2019; Jiang et al., 2017) was applied to the 6 m/pixel ortho-image F20_043532_1613_XN_18S028W 
adding fine-scale 3D information to the photogrammetrically generated CTX DTM. HDEM SfS takes the DTM 

Table 1 
Color and Stereo Surface Imaging System (CaSSIS) Product IDs Used in This Work and Associated Bandpass Filters 
(Nominal Band Center/Width From Thomas et al. (2017))

CaSSIS image ID

Channels

BLU (497/134 nm) PAN (677/232 nm) RED (835/98 nm) NIR (940/120 nm)

MY35_012254_200_0 X X X X

MY35_010295_341_0 X X X X

MY35_009668_200_0 X

MY35_009643_200_0 X

MY35_009581_202_0 X

MY35_009382_201_0 X

MY35_007119_203_0 X X X

MY35_006970_201_0 X X X

MY35_006945_200_0 X X X

MY34_005565_202_0 X X X

MY34_004533_198_0 X X

MY34_004359_201_0 X X X

MY34_004334_200_0 X X X

MY34_004272_200_0 X X

MY34_004247_199_0 X X X

MY34_003867_340_0 X X X

MY34_003693_342_0 X X X X

MY34_003494_340_1 X X X

MY34_003494_340_2 X X

MY34_002375_340_0 X X

Note. The available filters (BLU, PAN, RED, and NIR) are checked. The best R-G-B combination, to highlight alteration, 
basaltic bedrock, and flows was found to be, where available, NIR-PAN-BLU. RED-PAN-BLU yields very similar results.

Table 2 
Data Used in the East Ladon Site

HiRISE images CTX images for DTM generation CaSSIS images CRISM cube

ESP_064169_1615 F20_043532_1613 MY35_012254_200_0 FRT000128EA b

ESP_062745_1615 MY35_006945_200_0 a

ESP_043532_1615 B09_013045_1614 MY34_002009_200_0 a

ESP_013045_1615

Note. The three Color and Stereo Surface Imaging System (CaSSIS) images are shown on Figure 5.
 aThe two overlapping CaSSIS images. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) cube processing 
is described in Section 1 in Supporting Information S1.  bIn an attempt to complete the observations made with the cube 
FRT000128EA, the neighboring FRT0001750D cube was investigated as well but its poor signal-to-noise ratio did not make 
possible to usefully complement the information obtained with the cube FRT000128EA.
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and the ortho-image as inputs and iteratively refines the coarse input DTM via the minimization of a total cost 
function that integrates an intensity model of the image based on a novel radiative transfer scheme and two regu-
larization terms. The image model is built according to the geometrical acquisition conditions of the ortho-image 
and assuming a homogeneous bidirectional reflectance throughout the scene, taken as the Martian standard 
photometric function of Vincendon  (2013). The HDEM algorithm operates at horizontal scales of meters to 
hectometers. The vertical relative accuracy has been estimated to be in the order of 1 m, based on the level of 
morphologic detail achieved and previous numerical tests (Douté & Jiang, 2019).

2.4.  HiRISE Image Mosaic Interpretation

A mosaic of four High Resolution Imaging Science Experiment (HiRISE) images (A. S. McEwen et al., 2007), 
three of which were at a pixel size of 50 cm/pixel and the other at 25 cm/pixel, was produced. It overlaps the two 
studied CaSSIS images and was used to test and refine interpretations from the more spatially extensive CaSSIS 
data set. For instance, linear ridges that are not visible at the CaSSIS scale could be identified at the HiRISE scale 
and interpreted in geological terms.

2.5.  CRISM Compositional Analysis

The southern half of the CaSSIS mosaic of the East Ladon site is covered by a CRISM cube (S. Murchie 
et  al.,  2007), from which we analyzed the TER and MTRDR products (Seelos,  2016a,  2016b). The CRISM 
analysis protocol (Section 1 in Supporting Information S1) consists of three steps. In the first step, the spectral 
parameters defined by Viviano-Beck et al. (2014) were examined in order to get a first idea of the mineralogy 
within the cube. In the second step, the spectral characteristics which are persistent in the pixels throughout the 
cube were identified. A dune field that lines the graben visible in the north of the study area was found to be a 
type-region with a spectral signature representative of the entire scene. In the third step, mineralogical informa-
tion was retrieved from the identified geologic units and alteration levels. Their averaged spectra were ratioed 
with the averaged spectrum of the type-region. Mineralogy was interpreted based on the comparison between 
spectral absorptions and library spectra. The signal-to-noise ratio was additionally improved by mobile averaging 
of the resulting spectra. Mobile averaging was performed using a long box of 11 channels when seeking mafic 
minerals in the spectra because mafic minerals show long-wavelength spectral variations. The box included three 
or seven CRISM channels when seeking alteration minerals, which have much narrower absorption bands.

3.  Geological Analysis
3.1.  Geological Setting

Geologic mapping of the Ladon Basin by Irwin and Grant (2013) highlighted sedimentary basin fill units of late 
Noachian to late Hesperian age. In particular, the exposed stratigraphy includes multiple facies and depositional 
environments interpreted to be composed of coarse flood deposits from Ladon Vallis and finer-grained alluvium 
from radial valley networks. This unit (HNb2, Figure  1c) might also include minor components of strongly 
indurated aeolian infilling and volcanic sheets. HNb2 is overlain by a later embayment of volcanic materials or 
well-indurated sedimentary deposits (Hb3). Finally, superimposed simple and complex craters and their ejecta 
blankets partly cover the entire basin infilling sequence (AHc2). Apart from some younger impacts, the last phase 
of geological events involving the most part of the basin is dominated by faulting, predominantly extensional. 
The selected site in Ladon, however, is located on the nonwrinkled side of a wrinkle ridge formed in unit HNb2.

3.2.  Late Polygonal Faults and Ridges in Ladon Basin

Analysis of the CTX mosaic revealed that the main focus of the extensional faulting (excluding FFCs) is located 
in the western part of the Ladon basin, where a concentric and radial pattern of normal faults is centered roughly 
between 30°0'W-33°0ʹW longitude and 16°20ʹ–19°20ʹS latitude (Figure 2). Grabens radiate from this area to 
almost the entire basin floor, reaching the eastern margin where they appear more sporadically.

All over the basin, grabens show T- and Y-shaped junctions (Figures 3 and 4), defining polygonal faulting, which 
according to recent studies on Earth sedimentary basins (Collanega et  al.,  2020), are expressions of a radial 
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extension. In few cases, grabens crosscut the rim of FFCs, where the deformation is even more pervasive. This 
suggests a causative relationship between the regional radial stress and the FFC, where the oblate extensional 
deformation could have developed more easily, favored by the inherited impact fracturing and damage.

Several grabens gradually become positive ridges along the strike (Figure 3e). This observation excludes any 
kind of regional compressional reactivation since it would have caused the inversion of the related grabens along 
their entire length, as well as compressional reactivation of all the extensional features in proximity having a 
similar orientation. Thus, the most obvious interpretation for these linear ridges is that they are dikes that are 
more resistant to erosion than their host rock. The grabens are also intimately associated with dark lobate deposits 
and, locally, with white and yellow-orange alteration patches (Figure 4) as characterized at the study site in East 
Ladon (Figure 5).

The CaSSIS images (Table 1) at the East Ladon study area (Figure 5) are of particular geologic interest, in addi-
tion to benefitting from a rich data set coverage (Figure 1c). Located between FFCs, they display grabens with a 
Y-shaped junction, dark lobate deposits, alteration patches and small aligned ridges. Detailed geological mapping 
of these images together with a three-dimensional analysis of HiRISE data and a compositional study using the 
CRISM data are reported in the following sections (Sections 3.3, 3.4 and 4).

3.3.  Geological Units on CaSSIS Images in the East Ladon Study Area

The analyses of the CaSSIS NIR-PAN-BLU color composite of the East Ladon study area allowed us to identify 
three main geological units in the bedrock (Figure 6). Geological mapping shows local complexity, which is 
not evident on the much broader geological map of Irwin and Grant (2013) (Figure 1c). Stratigraphically, from 

Figure 3.  Color and Stereo Surface Imaging System (CaSSIS) and Context Camera (CTX) images showing T- and Y-shaped 
grabens. Locations are in Figure 2 and image numbers are in Table 1. Panels (a–d) show CaSSIS images overlying the 
Murray Lab CTX mosaic (Dickson et al., 2018). The CaSSIS IDs are (a) MY35_009668_200_0 (PAN); (b) overlay of 
MY34_003867_340_0 (BLU-PAN-NIR) and MY34_003494_340_2 (BLU and NIR); (c) overlay of MY34_004533_198_1 
(BLU and PAN) and MY35_009382_201 (PAN); and (d) MY34_003693_342_1 (NIR-PAN-BLU). Panel (e) shows two 
ridges (white arrows), one of which transitions to a graben (black arrows). Murray Lab CTX mosaic centered at 18.7°N, 
331.8°E.
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bottom to top, the following units are recognized (Figure 6): (a) a rough and bluish Unit 1, locally changing to 
white and yellow-orange patches; (b) a smoother Unit 2 of bluish resistant material with locally yellow-orange 
patches; (c) a dark blue-violet (indigo), smooth capping unit closely associated with the grabens (Unit 3). On the 
plateau surface, each unit is separated by the others by a scarp usually 10–30 m high. The grabens are NW and 

Figure 4.  Color and Stereo Surface Imaging System (CaSSIS) and Context Camera (CTX) Images showing flow fronts 
and/or alteration patches. Locations are in Figure 2 and image numbers are in Table 1. Black arrows point to flow features 
akin to Unit 3 in the East Ladon study site (Figure 6), and white arrows point to the associated graben. The CaSSIS IDs 
are (a) MY34_005565_202_0 (NIR-PAN-BLU); (b) MY34_002375_340_0 (RED and NIR); (c) MY35_010295_341_0 
(NIR-PAN-BLU); (d) CTX image P11_005503_1637_XN_16S028W; (e) MY34_004359_201_0 (NIR, PAN, and BLU); and 
(f) MY35_006970_201_0 (NIR-PAN-BLU).
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NE oriented, they show a Y-shaped junction and act as sand traps (Figures 5 
and 6).

Units 1 and 2 correspond to HNb2 and Hb3 in the Irwin and Grant's (2013) 
geologic map, respectively, but Unit 3 is not defined. It stratigraphically 
overlies Unit 2 and where Unit 2 is eroded away, it overlies Unit 1. Unit 3 
is composed of several distinct sheets bounded by lobate fronts that some-
times overlap each other. These features suggest a flow origin, whether 
lava or mud (Brož et al., 2020). CTX images reveal that similar flows are 
widespread throughout the Ladon basin and are associated with grabens and 
ridges (Figures 4a, 4b and 4d). Although the graben formation is usually the 
youngest identified geological event in the basin evolution, units akin to Unit 
3 and the associated grabens do not always show unequivocal crosscutting 
relationships. In most, though not all cases, the flows are observed to be cut 
by the graben fault scarps, suggesting that flows are precursor events to the 
surface fracturing.

3.4.  Alteration Levels on CaSSIS and HiRISE Images

The white and yellow-orange patches observed in Units 1 and 2 on the 
analyzed CaSSIS images (Figures 5 and 7) may be representative of either 
stratigraphic unit or altered levels. They are well exposed along the walls 
of the graben (Figure 8), where they are clearly seen to vary in depth and 
thickness at the scale of meters, suggesting that they are altered levels rather 
than part of the original stratigraphy within Units 1 and 2, which appear to be 
more constant in elevation and thickness. The yellow-orange level is exposed 
above the white level, over a thickness of 10–40 m on the side of the graben, 
which is almost 10 times the thickness of the white level. Both levels are 
usually separated by dark rock. However, HiRISE images suggest that they 
are locally in contact. In the map view, the white patches are scattered in Unit 
1, whereas the yellow-orange patches also appear in Unit 2 when the surface 
is slightly eroded.

Hundreds of linear ridge of maximum length hundreds of meters are observed 
(Figure  9). The two overlapping CaSSIS images are also overlapped by 
HiRISE images (Figure 1c) and the CTX-based DTM, making it possible to 
correlate observations at different scales with good topographic control. At 
the HiRISE scale, the yellow alteration level is seen as topographic ridges 
surrounded by yellow-orange deposits. Ridge height (Figures 9b and 9c) is 
up to 15 m. The yellow-orange deposits may be debris slopes on the ridge 

sides, or, since the yellow-orange terrain is observed to form a continuous layer on the graben walls, an eroded 
layer abutting against stronger ridges of similar composition. Figure 7d shows that the ridges, when sufficiently 
exposed, are fully brecciated.

Many ridges follow a common ENE trend (Figure 9a, inset), indicating structural control. The structural trend 
corresponds to the northeastern segment of the Y-shaped graben. A few ridges correspond to impact crater rims, 
indicating that rim structures may have acted as alteration pathways. These observations suggest that the altera-
tion is the result of fluids flowing along hydrothermal conduits. Ridge topography indicates that the ridges are 
more resistant than the surroundings. The white patches appear rather flat and sometimes fracture into meter-to 
decameter-scale plates. Their trend is not indicative of structural control.

The DTM indicates that the width of the ridges, debris slopes excluded, does not exceed a few meters. On HiRISE 
images, many of them are detected at the pixel size resolution, indicating that they are probably much thinner 
(Mège & Korme, 2004), perhaps even thinner than the 25–50 cm pixel width. Linear ridges in geology include 
schistosity plane traces, glacial lineations, and veins and dykes. The first two are discarded on the basis of the 
known geologic environment. Although the definition of a vein, whether igneous or mineral, does not usually 

Figure 5.  Color and Stereo Surface Imaging System mosaic (NIR-PAN-BLU) 
of the East Ladon study site with a magnification of the alteration zones and 
Y-shaped graben pattern. A and B locate the two endpoints of the geologic 
section shown in Figure 25. Image IDs are in Table 1.
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include size constraints, vein length and width do not usually exceed meters and centimeters, respectively, and 
their propagation is sensitive to the stress field in their local environment as well as host rock existing discon-
tinuities, making them usually not strait (e.g., Gudmundsson et al., 2002). Dikes are in better agreement with 
observations with respect to dimensions, thickness, and straightness. Nevertheless, the restriction to an altered 
level does not argue in favor of this interpretation. The fully brecciated structure is not typical of magmatic dykes 
either, even though brecciation is not uncommon in magmatic dikes on Earth. Brecciation does not affect the 
presence of chilled dike margins or the usual dyke fracturing pattern perpendicular to strike, and such patterns 
can be seen on HiRISE images (Mège & Gurgurewicz, 2016). Therefore, the nature of these structurally guided 
linear ridges needs more investigation.

The other CaSSIS image at the Ladon site is not covered by HiRISE imagery or the CTX-based DTM (Figure 1c). 
The observed geological units are similar to those identified in Figure 6, and similarly, linear ridges are observed 
in Unit 1 and in the partly eroded Unit 2 (Figure 9d). The ability to map narrow geologic patterns using CaSSIS 
color imagery in the absence of higher resolution data can therefore be evaluated. The yellow-orange color of 
the ridges on the CaSSIS image, combined with the shades apparent on panchromatic images of similar reso-
lution (CTX), proves helpful for mapping, although obviously, the lack of HiRISE data limits accuracy. The 
azimuth-frequency plot (Figure 9d, inset) shows that the ridge orientation, 77.9° ± 23.11 (1σ), is similar to that 
measured on the two overlapping CaSSIS images on Figure 9a, 69.1° ± 20.32 (1σ). The ridges seen in Figure 9d 

Figure 6.  (a) Context Camera (CTX) ortho-image (B09_013045_1614, 6 m/pixel) used for geologic mapping of the East 
Ladon study site and (b) geological map. Unit numbers increase inversely to their relative age; letters indicate distinct 
outcrops for the same unit.
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are located on both sides of the northeastern segment of the Y-shaped graben, suggesting that the stress field that 
prevailed during their emplacement was similar to that which guided graben formation.

Ridge analysis reveals that the combination of CaSSIS and HiRISE data reduces the likelihood of erroneous 
interpretations that would result from HiRISE analysis alone. The thickest dikes and veins are so thin that they 
can be confidently traced along the HiRISE color strip only. Combining the HiRISE resolution and the CaSSIS 
colors makes it possible to substantially enhance the geologic return both by extending reliable observations 
throughout the surface area where joint HiRISE and CaSSIS data are available and by highlighting the continuity 
of structures at the regional scale, as is well known by cartographers working on multiresolution remote sensing 
data sets. When HiRISE data are not available, the nearly complete CTX coverage of the planet, with a resolution 
equal to the resolution of the CaSSIS images, is equally helpful for geological interpretation through shades, even 
without exploiting them by photoclinometry.

4.  Composition of Flows and Hydrothermal Alteration Zones
4.1.  K-Mean Spectral Clustering Technique

We applied the clustering technique to three 100 × 100 pixels yellow-orange alteration zones. The resulting natu-
ral number of clusters for selection 1 (Sel 1), 2 (Sel 2), and 3 (Sel 3) are 3, 6, and 5, respectively. In the three areas, 
the results spectrally separate the most altered classes along the rectilinear ridges (Figure 10). To highlight the 
different absorption strengths observable from the ferrous (Fe 2+) or ferric (Fe 3+) iron spectra, we normalized all 
spectra at 0.677 μm (band 2). In this way, it is possible to highlight the inverse relationship between the behaviors 
of bands 3, 4, and band 1. In general, deeper absorption at band 4 equates to a shallower absorption at band 1 and 
it appears to be sensitive to the presence of ferrous (or mafic) compositions, while the opposite is true for ferric 
altered compositions. As can be seen from Figure 10, cluster 2 of Sel 1, cluster 5 of Sel 2, and cluster 4 of Sel 3 are 
well correlated with alteration zones within the graben and imply a ferric composition. The distribution of all the 
other clusters shows a spreading of the alteration from these ridges outwards. These patterns support an alteration 
system controlled by strengthened fractures affecting a significantly less weathered bedrock.

Figure 7.  Correspondence between the main discussed geologic units on CaSSIS (CaSSIS image MY34_002009_200_0, 
bands RED-PAN-BLU as RGB) and one of the HiRISE images (ESP_013045_1615, color).
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4.2.  Results From Spectral Parameters

Spectral parameters calculated from the CRISM cube are used to guide mineralogical investigations further 
(Table 3). All the parameters and MTRDR browse products introduced by Viviano-Beck et al. (2014) and refined 
by Seelos (2016a, 2016b) were reviewed. Those yielding the most significant information were updated using the 
latest MTRDR versions and are shown in Figures 11 and 12. The FM2 composite shows that nanophase ferric 
oxides (in red on Figure 11b) are pervasive at the surface. Olivine is well detected in the yellow-orange areas (red 
on Figure 11c), in contrary to pyroxene. Since these areas are flow alteration products, the flows are interpreted 
to be of volcanic origin. Olivine is also detected in the flows but is more patchy, probably due to blanketing by 
the ferric oxides. The better detection of olivine in alteration products than in the flows themselves is interpreted 
as a consequence of the ridged topography of the yellow-orange level, which should make it less dusty than the 
horizontal flow surface.

The magenta color of the CAR composite (Figure 12a) suggests that the yellow-orange areas are rich in Fe/
Mg phyllosilicates. Their cyan color in the PFM composite indicates either Mg-carbonates or Fe/Mg smectites 
(Figure 12b). Their blue color on the HYD composite indicates that they include hydrated minerals, though not 
hydrated sulfates (Figure 12c). The BD3000 parameter shows enrichment in adsorbed or bound water both in the 
yellow-orange and white areas (Figure 12d). The white areas are often mantled by bluish, likely mafic, minerals 
(Figure 7f), probably coming from the surrounding flows, in which water is not detected. The detected water is 
therefore probably a component of the white rock.

The parameters suggest that the study area includes mafic or ultramafic volcanic rocks (Units 1–3) with removal 
of pyroxenes and addition of phyllosilicates in the yellow-orange terrain of Unit 1. Hydroxylated minerals are 
present in the yellow-orange terrain, including silicates but perhaps also other mineral families, and water-bearing 

Figure 8.  (a) Topographic profiles of the lower and upper contacts between the yellow-orange and white levels and the dark host rock; three-dimensional Color and 
Stereo Surface Imaging System (CaSSIS) (b) and vertical HiRISE (c) views of the East Ladon study site (no vertical exaggeration). Topographic information was 
extracted from CTX-derived digital terrain model. The variations in elevation of the yellow-orange and white levels in panel (a) suggest that they are altered levels rather 
than stratigraphic levels. The lateral extent of the topographic profiles is indicated in panel (b). In panel (b), the CaSSIS image is MY34_002009_200_0 and the RGB 
composite was obtained using the filters RED, PAN, and BLU, respectively. The HiRISE image in panel (c) is ESP_013045_1615 and the view is located in panel (b).
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minerals are expected in the yellow-orange and white terrains. Based on the spectral parameters, sulfates are 
precluded.

4.3.  Analysis of CRISM Spectral Characteristics: Mafic Minerals

Spectra representative of the three flow units (Figure 13) do not show any substantial difference (Figure 14). A 
broad ∼2 μm absorption appears to be present throughout the cube, implying a mafic component consistent with 
pyroxene-bearing materials. In spite of instrumental artifact, the CRISM spectra also show a deep absorption at 
∼1 μm and broader absorption between 2.0 and 2.3 μm, consistent with pyroxenes.

Figure 9.  (a) Linear ridges (red) mapped using Color and Stereo Surface Imaging System (CaSSIS) (NIR-PAN-BLU composite) and HiRISE images. The 
frequency-azimuth plot in the upper right shows a ridge orientation. The short-dashed line locates the boundary between the two images in the CaSSIS mosaic. Lines 
with longer dashes locate the boundary of the two HiRISE images. (b) Topographic profile across some of the ridges. The arrows mark the inferred positions of the 
ridges. Topography is from the Context (CTX) digital terrain model generated using the High-resolution Digital Elevation Model from Shape-from-Shading method. 
Vertical exaggeration is 5×. (c) Perspective view. The ridges are yellow-orange. (d) Linear ridges (orange) mapped using CaSSIS (NIR-PAN-BLUE composite) 
and CTX images, without the help of HiRISE. The frequency-azimuth plot in the upper right shows a ridge orientation. On the rose diagrams, “n” is the number of 
measurements.
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Olivine also has a major band center at ∼1.05–1.09 μm, which may be covered by the CRISM artifact zone. 
However, from ∼1 μm toward longer wavelengths, olivine library spectra display a spectral bend which is also 
found in the CRISM pixels U1-3. The type of olivine, ferrous or Mg-rich, cannot be determined.

4.4.  Alteration Minerals

Figure 13 also shows a region of interest (ROI) of 3,969 pixels selected in the dune field located on the floor of 
the graben visible on the CRISM image. Comparison with the dark terrain samples U1-3 (Figure 14) shows that 
the dunes are made of the same material. Further, ratioing U1-3 with the averaged spectrum of this ROI (provided 
in Figure S1 in Supporting Information S1) removes all absorptions (Figure 15). The ROI can therefore be used 
as a denominator for ratioing spectra from the yellow-orange and white terrains to identify minerals having 
narrow absorption bands, keeping in mind that olivine and pyroxene are also present but removed by the ratioing. 
This  approach is different from the usual approach, where ratioing is done with bland terrain, absent in this cube. 
Ratioing makes it possible to remove the long wavelength signature of mafic minerals (Figure 14) while keeping 
the narrower absorptions of alteration minerals.

The yellow-orange terrain spectra which are the most different from the denominator are located in two ROIs, 
which correspond Sites A and B on Figure 13. A third ROI, which corresponds to Site C, is representative of the 
white terrain (see the pixel coordinates in Section 3 in Supporting Information S1).

In Figure  16, the spectrum at Site A is compared with library spectra of serpentinite: antigorite, chrysotile, 
and lizardite. The three share the same chemical formula but differ in structure. In the CRISM range, the three 
minerals are characterized by four absorption bands at 1.38–1.41, ∼2, 2.32–2.34, and 2.52 μm, which altogether 
are diagnostic (Bishop, Lane, et  al.,  2008; Ehlmann et  al.,  2010; Viviano-Beck et  al.,  2014). Moreover, the 

Figure 10.  The selection of the areas on the Color and Stereo Surface Imaging System data set where the k-mean algorithm has been applied. The number of clusters 
identified are 3, 6, and 5 for selection 1, 2, and 3, respectively (b–d). The average spectra normalized at a value of 1.0 at 0.677 μm are reported for each selection. The 
colors of the spectra refer to the upper right image of panels (b–d). In all selections, the dikes and veins are identified by the red color cluster.
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spectrum of Site A and the type serpentine from the Minerals Identified through CRISM Analysis (MICA) library 
(Viviano-Beck et al., 2014) are similar. The similarity is especially strong at wavelengths longer than 1.6 μm. The 
vibration observed at 1.41 μm at Site A is between the Mg3-OH overtone at 1.38–1.39 μm and the 1.43 Fe2-OH 
overtone (Bishop, Lane, et al., 2008), suggesting an intermediate, (Fe, Mg) serpentine composition. Fifth absorp-
tion, at 2.09 μm, is also observed in the MICA type serpentine, and corresponds to an additional band observed 
between spectral peaks at 2.06 and 2.18 μm in the laboratory serpentine spectra.

Although antigorite forms at higher temperatures than chrysotile and lizardite (Wenner & Taylor, 1971), poten-
tially constraining the formation environment, their difference in near-infrared spectra observed under laboratory 
conditions (for instance in the 1.4 μm region, King & Clark, 1989) makes them unlikely to be distinguished on 
the CRISM whole rock measurements. Nevertheless, the mechanical strength of chrysotile is much lower than 
the strength of antigorite and lizardite (Moore et al., 1996), which suggests that the yellow-orange linear ridges 
(Figures 7 and 9) dominantly include antigorite and/or lizardite.

Minerals from the chlorite group are frequently associated with serpentinite, and although their reflectance spec-
tra share many absorptions in the CRISM-relevant spectral range, a diagnostic difference exists around 2.3 μm 
(Bishop, Lane, et al., 2008). Chamosite, the Fe 2+ end-member of the chlorite group Fe-Mg solid solution, has two 
strong absorptions, at 2.26 and 2.36 μm (Figure 17). They are not identified at Site A. On the contrary, the Mg 3+ 
end-member clinochlore has the same ∼2.32 μm band (here at 2.33 μm) as serpentine, but also two shoulders, 
resulting in a broader, flared band. The spectral shape of Site A does show such a broad band, perhaps more 
consistent with chlorite than serpentine. A second clue to the presence of clinochlore is its absorption at 2.58 μm, 
which echoes the 2.59 μm band at Site A, and is not found in the serpentine.

Spectral absorption analysis suggests that due to the presence of diagnostic bands both serpentine and chlorite are 
present in the CRISM spectra. The 2.09 μm band at sites A and B, although not diagnostic of serpentine (Bishop, 
Lane, et al., 2008), is present in some terrestrial serpentines (Figure 16) but not in chlorite. In the contrary, the 

Table 3 
Mineralogical Interpretation of the Spectral Parameters Used in This Work (After Seelos (2016b)

Color composite Spectral parameters

Interpretation

Flow units Yellow-orange terrain White terrain on flow unit

TRU R600

True color R530

R440

FM2 BD530_2 Nanophase ferric oxides Nanophase ferric oxides Nanophase ferric oxides

Fe minerals BD920_2

BDI1000VIS

MAF OLINDEX3 Olivine Olivine Olivine

Mafic minerals LCPINDEX2 Low-Ca pyroxene Masked by alteration minerals Low-Ca pyroxene

HCPINDEX2 High-Ca pyroxene High-Ca pyroxene

CAR D2300 Fe/Mg phyllosilicates (Red, 
magenta: Fe/Mg phyllosilicates)Carbonates BD2500_2

BD1900_2

PFM BD2355 Mg Carbonates (Cyan: Mg 
carbonates or Fe/Mg smectites)Phyllosilicates with Fe and Mg D2300

BD2290

HYD SINDEX2 Hydrated minerals but not sulfates 
(hydromagnesite?)Hydrated minerals BD2100_2

BD1900_2

– BD3000 Adsorbed and bound water 
(hydromagnesite?)

Adsorbed and bound water 
in white terrain (alunite?)
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2.59 μm band observed at Site A is observed in terrestrial clinochlore but not in a serpentine. The flared band 
at 2.33 μm at Site B is more reminiscent of chlorite than serpentinite. As far as spectral shapes are concerned, 
while the MICA serpentine type spectrum shape is particularly close to the spectrum shape of Site A at wave-
lengths longer than ∼2.0 μm, the chlorite type spectrum shape appears closer to the spectrum of Site B at such 
wavelengths (Figures 16 and 17). These figures argue in favor of CRISM detections combining serpentinite and 
chlorite.

Serpentine and clinochlore are green, suggesting the presence of additional minerals in the pixels where they are 
detected in order to explain their yellow-orange tone seen on the CaSSIS and CRISM true color images (Figures 5 
and 11a, respectively). The PFM composite in Figure 12b suggests that Mg-carbonates might also be present in 
the yellow-orange terrain, where it would be an alternative to Fe/Mg smectites. Carbonates would potentially 
contribute to the yellow-orange color more significantly than Fe/Mg smectites, as illustrated by carbonates of 
similar yellow-orange color elsewhere on Mars (Wray et al., 2016). Furthermore, the presence of smectites in the 
study area is unlikely to be significant as from the CRISM spectra.

A search for carbonates was done at Sites A and B (Figure 18). Hydromagnesite, whose spectral shape in the 
NIR range is particularly close to that of the MICA mgs, was used as a potential analog to carbonate spectra in 
Nili Fossae (Ehlmann et al., 2008). At sites A and B, hydromagnesite absorptions at 2.31 and 2.51 μm (Cloutis 
et al., 2010) are not diagnostic and were attributed to serpentine or chlorite (Figures 16 and 17). More inter-
esting are the absorptions observed at 3.43–3.45 and 3.86 μm, as well as the broad spectral bend centered at 
3.7 μm, which echoes to the same features on the hydromagnesite library spectrum. Overall, similar to the MICA 
Mg-carbonate spectrum, the spectral shape of sites A and B between ∼2.1 and ∼3.9 μm follows the one of the 
library hydromagnesite. However, the spectral bend might alternatively correspond to an instrumental artifact 
(Seelos, 2016b).

Figure 11.  Composite of spectral parameters showing the area true color (TRU), the distribution of iron-rich minerals (FM2) 
and the distribution of mafic minerals (MAF), after Viviano-Beck et al. (2014) and Seelos (2016b). The lower panels indicate 
the distribution of the yellow-orange alteration zones (orange stripes) and white alteration zones (green stripes) based on 
CaSSIS image interpretation. (a) Red: R600 (visible, red); green: R530 (visible, green); and blue: R440 (visible, blue). The 
colors were slightly stretched (0.05%) in the top image to highlight color differences; the lower image gives the true colors; 
(b) Red: BD530_2 (0.53 μm band depth, nanophase ferric minerals); green: BD920_2 (0.92 μm band depth, crystalline ferric 
minerals); Blue: BDI1000VIS (1 μm integrated band depth: olivine, pyroxene, Fe-bearing glass); and (c) Red: OLINDEX3 
(olivine); LCPINDEX2 (low-Ca pyroxene); HCPINDEX2 (high-Ca pyroxene).
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The CRISM measurements are consistent with the presence of Mg-carbonates 
such as hydromagnesite. Carbonates, in particular magnesite, were found to 
be 2–5 wt% of the widely distributed Martian dust (Bandfield et al., 2003), to 
which the East Ladon region may have contributed.

The likelihood of talc absorptions was investigated (Figure 19). There are 
several reasons to think that talc may be present at sites A and B. Talc has 
absorptions at 2.00, 2.08, and 2.31 μm, which are observed at these sites. 
Major absorptions at 2.39 and 2.46  μm are missing; however, they are 
also missing in the talc type spectrum of the MICA library (Viviano-Beck 
et al., 2014). The overall spectral shape at Site B is also consistent with the 
spectral shape of the talc from the laboratory and from the CRISM type spec-
trum library. The occurrence of talc at sites A and B is therefore plausible; 
however, it is not demonstrated, since some of the talc absorptions are shared 
by serpentine, chlorite, and Mg carbonate, which are more robustly identified 
here.

These results have two major implications. First, the yellow-orange terrain 
includes the same olivine and pyroxenes as the dark terrains of Units 1–3, 
which were subtracted by ratioing, and also serpentine, chlorite, Mg-carbonate, 
and perhaps talc. It appears from the similarities in the absorptions observed 
in Figures 16–19 (summarized in Table 4) that these minerals are mixed at 
the scale of CRISM pixel size, 18 m. Serpentine, chlorite, Mg carbonates, and 
perhaps talc are probably present in most yellow-orange ridges but in different 
proportions. Secondly, the serpentinite/chlorite/Mg carbonate ±  talc mix is 
altered from a volcanic unit (Unit 1), implying that this unit is of ultramafic 
composition. From the spectral and geomorphological points of view, there is 
no criterion identified that would suggest that Units 2 and 3 are different from 
Unit 4, and we consider plausible that their composition is ultramafic too.

The spectral bands in the white terrain spectrum (Site C) are weak. However, 
the diagnostic bands of kaolinite (Bishop, Lane, et al., 2008) and its poly-
morphs, dickite and halloysite, may be present (Figure 20). In addition to 
the diagnostic bands, the white terrain displays absorption at ∼1.8 μm which 
is particularly well developed in dickite, commonly found along hydro-
thermal veins. This absorption wavelength is also found in alunite (Clark 
et al., 1990); however, the spectrum at Site C does not show evidence of any 
other absorption that would match alunite absorptions as from library spec-
tra. Our preferred interpretation of Site C is that the aluminum phase is taken 
by minerals from the kaolin group, and perhaps alunite.

5.  Crater Retention Age of the Lava Flows
We estimated the crater retention age of the exposed geological units using 
the CraterTools add-on (Kneissl et al., 2011) for ArcGIS coupled with Crater-
Stats2 (Michael & Neukum, 2010).

In order to maximize the statistics of the age determinations, we enlarged the 
geologic map presented in Figure 6 (Figure 21). This allowed us to consider 
wider portions of the geological units to be dated.

The crater counts were carried out on three areas corresponding to Units 1, 2, 
and 3. The counting areas covered 553.65, 1,084.97, and 229.64 km 2, respec-
tively. The age determination of Unit 2 fully meets the Warner et al. (2015) 

surface area requirement for reliable high resolution crater counts, whereas Units 1 and 3, although smaller than 
what recommended, are well above the 100 km 2 area considered as the reliable detection threshold by the same 
authors. Additionally, knowing that Unit 2, whose absolute age is the most reliable, is placed stratigraphically in 

Figure 12.  Composite of spectral parameters showing the carbonates 
versus Fe/Mg phyllosilicates (CAR and PFM) and the distribution of 
hydrated minerals (HYD), and the BD3000 refined spectral parameter, 
which shows adsorbed and bound H2O (after Viviano-Beck et al. (2014) 
and Seelos (2016b)). The lower panels indicate the distribution of the 
yellow-orange alteration zones (orange stripes) and white alteration zones 
(green stripes) based on CaSSIS image interpretation. (a) Red: D2300 (2.3 μm 
drop-off); green: BD2500_2 (Mg carbonate); blue: BD1900_2 (1.9 μm H2O 
band depth); (b) Red: BD2355 (2.35 μm band depth); green: D2300 (2.3 μm 
drop-off); blue: BD2290 (2.29-μm Mg, Fe-OH band depth); and (c) Parameter 
BD3000: Adsorbed and bound H2O.
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between the other two units, the absolute age of the upper and lower limits, respectively, of Units 1 and 3 is more 
robustly constrained.

Model ages were obtained by plotting the data using a pseudo-log binning on cumulative plots and by fitting them 
using the crater production function of Hartmann and Daubar (2017). The Poisson probability density function 
(Michael et al., 2016), in addition, was applied to elude any binning of the data and to ascertain the accuracy 
of the cumulative representation despite the reduced size of the counting areas. Finally, randomness analysis 
(Michael et al., 2011) was performed using the mean second closest neighbor distance approach to verify the 
spatial random distribution of the crater population.

The comparison of results obtained using (Cumulative, C) or without (Poisson, P) the binning-fitting method 
shows no significant divergence. The age of Unit 3 spans between 1.88 and 1.67 Ga for the C and P fitting, 
respectively, and ages around 2.83 (C) −2.25 (P) Ga and 3.33 (C) −3.10 (P) Ga was found for the Units 2 and 1, 
respectively (Figure 22).

The exposed stratigraphy of the study site starts with lava flows from the late Hesperian (Unit 1), renewed 
volcanic activity dated between the late Hesperian and early Amazonian (Unit 2), and again during the early 
Amazonian Unit 3 (Unit 3), after which erosion of the volcanic pile partly exhumed Unit 1.

6.  Discussion
6.1.  Outstanding Issues

The results indicate that resurfacing by lava flows of ultramafic composition of this part of the Ladon basin 
occurred between the late Hesperian and early Amazonian. Although spectral information is consistent with 
mafic volcanism as well, alteration to serpentine favors emplacement of ultramafic flows. Alteration of the source 
rock occurred through a dike and vein system (e.g., Gudmundsson et al., 2002). These results raise several issues.

•	 �First, serpentinization occurs in oceanic crust on Earth and is visible today in ophiolites. Ophiolites are 
unlikely on Mars, and another mechanism for serpentinization is needed.

•	 �Second, the serpentine, chlorite, carbonate, and talc signatures are observed at topographic highs within an 
eroded lava flow, usually in the form of yellow-orange linear ridges (Figures 7–9). However, the walls of 

Figure 13.  The location of the three pixels (representative of Unit 1, Unit 2, and Unit 3, respectively, on Figure 6) whose 
spectrum is displayed in Figure 14; the location of the three region of interests (ROIs) of Sites A–C (3, 7, and 44 pixels, 
respectively); the location of the denominator ROI (1,369 pixels) used for spectral ratioing. Coordinates are given in Section 
3 in Supporting Information S1. The background Compact Reconnaissance Imaging Spectrometer for Mars image is the 
67-31-11 R-G-B color composite, which approximates the colors that would be seen in a Color and Stereo Surface Imaging 
System NIR-PAN-BLU color composite image.
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the graben in the studied area distinctly show that the yellow-orange level is 
an alteration layer. This layer is thus to include resistant ridges in a weaker 
matrix. A strengthening mechanism is required.
•	 �The pixel size of the CRISM cube is 18  m. The detected serpentine, 

chlorite, carbonates, and talc are representative of yellow-orange terrain 
exposed as ridges usually not thicker than meters. Some minerals are 
more apparent at Site A and others at Site B. This implies that these 
minerals are closely distributed in the field. They are mixed in the 
CRISM pixels, with some of them more emphasized at some sites (e.g., 
A) and others more emphasized at other sites (e.g., B).

•	 �Ridge orientation emphasizes that their formation was influenced by 
the ambient stress field. They are observed to be fully brecciated, and 
their mineralogy suggests a magmatic origin. Nevertheless, interpreting 
them as dikes or veins is not without issues. A satisfactory mechanism of 
formation needs to be found.

•	 �Kaolin polymorphs, found in the white terrain, may form in listwanite 
systems, but may also have a distinct origin. HiRISE image observation 
shows that the white terrain occurs within topographic lows.

6.2.  Listwanitization

We suggest that the yellow-orange terrain is formed using hydrother-
mal processes akin to listwanitization. The term listwanite has been used 
to describe a variety of rock types; here we follow the broad definition 
suggested by Ash (2001), according to which listwanite is a descriptive term 
that characterizes the full range of genetically related assemblage of minerals 
formed by hydrothermal alteration of ultramafic rocks. Listwanite therefore 
includes a range of rocks such as serpentinites as well as silica-carbonate 
derived products such as carbonate rocks, talc, and quartz. Of these miner-
als, only quartz was not found, which may be explained by the flat reflec-
tance of quartz in the CRISM spectral range. Ophiolite is the prominent 
natural geologic context of listwanites on the continental Earth. Serpenti-
nization is an oceanic process; in contrast, carbonation commonly occurs 
on land after ophiolite obduction by subaerial weathering, as shown by 
depth-dependent listwanitization in the Semail ophiolite and the absence of 
deformation listwanite fabric in the Bir Umq ophiolite (Gahlan et al., 2022; 
Kelemen et  al.,  2011). However, submarine carbonation at some oceanic 
ridges makes atmospheric contribution not mandatory. Listwanite is also 
intimately related to tectonic deformation; it has been described in thrust 
systems (Ash & Arksley, 1990; Hansen et al., 2005; L. Zhang et al., 2015; 
Sherlock & Logan, 1995; Xiangzhen et  al.,  2009); as well as along large 
shear zones (Qiu & Zhu, 2015; Robinson et al., 2005).

Listwanitization in Ladon would provide a framework for the coexistence of 
resistant yellow-orange ridges and a hosting weaker layer, such as illustrated 
in Figures 7d and 7f, and also their color, which would be chiefly due to 
carbonates (Wray et al., 2016). Listwanite ridges are commonly observed 
within serpentinite massifs; their topography is a consequence of silicifica-
tion. The silica-carbonate assemblages of listwanite are fracture-controlled 

(“dike-like bodies,” Hamdy et al., 2022) and depend on temperature gradients, with serpentine and carbonates 
developing at higher temperature and silica (usually quartz) at lower temperature along fractured pathways 
(Ash,  2001; Azer,  2013; Falk & Kelemen,  2015; L. Zhang et  al.,  2015; Robinson et  al.,  2005; Sherlock & 
Logan,  1995) following mechanisms detailed by Stanger  (1985), Buckman and Ashley  (2010), and Ulrich 
et al. (2014).

Figure 14.  Comparison between spectral characteristic representative of 
the three dark terrain units (U1-3, located in Figure 13; coordinates are in 
Section 3 in Supporting Information S1), and spectral characteristics of some 
end-member pyroxenes (low to high-Ca) and olivines (ferrous to Mg-rich). 
The Compact Reconnaissance Imaging Spectrometer for Mars spectra were 
mobile-averaged with an 11-channel box to smooth noise while enhancing 
large-scale variations. The library spectrum of augite (NMNH120049) is from 
the USGS spectral library (Kokaly et al., 2017), and the other library spectra 
(pigeonite DL-CMP-008-A, olivine spectra) are from RELAB (R. E. Milliken 
et al., 2016). The olivine spectra (Fo10, Fo30, Fo50, Fo70, and Fo90) were 
studied by Dyar et al. (2009).
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Yellow-orange listwanite ridges looking similar to those in East Ladon are strengthened by silica and were 
described for instance at the Sartohay ophiolite along the Dalabute shear zone in Xinjiang (Buckman & 
Ashley, 2010; Qiu & Zhu, 2015; Robinson et al., 2005), the Luobusa ophiolite along the Tsangpo suture (L. 
Zhang et al., 2015; Xiangzhen et al., 2009), the Semail ophiolite in Oman (Falk & Kelemen, 2015), the ophiolites 
of Eastern (Hamdy et al., 2022) and South Eastern (Azer, 2013) Deserts of Egypt, and at the Bir Umq ophiolite in 
Arabia (Gahlan et al., 2022). Listwanite ridges are usually meters to tens of meters high, similar to those observed 
in Ladon but may be as high as a few hundred meters, as seen in the Semail ophiolites.

The serpentinization of ultramafic rocks and silica-carbonation of listwanites involve a broad range of chemical 
reactions, with olivine, pyroxene, and plagioclase as the sources, as well as reservoirs of H2O and CO2, which 
may or may not include the atmosphere. Serpentine is a secondary source from which carbonates and quartz are 
derived, as well as other mineral species, such as talc. Kelemen et al. (2011) synthesize many of them. Chlorite 
may result from the solid-state transformation of serpentinite (H. Zhang et al., 2021).

Some of the chemical reactions (Kelemen et al., 2011) that may be relevant to the studied Ladon area are as 
follows:

Mg-olivine + H2O + CO2 => serpentine + magnesite�

Mg-olivine + H2O + CO2 => talc + magnesite�

Mg-Olivine + CO2 => quartz + magnesite�

Mg-Olivine + H2O => serpentine + brucite�

Brucite is metastable and may react further as follows:

Serpentine + brucite + CO2 => serpentine + magnesite + H2O�

Serpentine + magnesite + H2O => talc + magnesite + H2O�

Talc + magnesite + H2O => quartz + magnesite + H2O�

Some chemical reactions involve pyroxene, for instance:

Mg-olivine + High-Ca pyroxene + H2O + CO2 => serpentine + calcite�

Mg-olivine + High-Ca pyroxene + H2O => serpentine + Ca(aq) + OH, then�

Figure 15.  Ratioed spectra of dark terrain (U1, U2, and U3 for Unit 1, Unit 2, and Unit 3, respectively). The ratioed spectra 
are almost flat (green lines) and become flat after continuum removal (red lines). Contrary to Figure 14, the spectra were not 
mobile-averaged.
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Figure 16.

 21699100, 2023, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JE

007223 by C
ochrane France, W

iley O
nline L

ibrary on [31/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Planets

MÈGE ET AL.

10.1029/2022JE007223

22 of 38

Ca(aq) + OH + CO2 => CaCO3 + H2O�

The following reaction was proposed by Sherlock and Logan (1995):

Serpentine + H2CO3 (aq) + H4SiO4 (aq) => magnesite + water + quartz�

In these reactions, Fe may add or substitute to Mg in olivine, for instance (Templeton & Ellison, 2020):

Ferroan brucite + SiO2 (aq) + H2O => Fe-serpentine + H2�

Iron may also be incorporated in hydroxides, for instance (Kelemen et al., 2011; Templeton & Ellison, 2020):

Fe-olivine + H2O => Fe-serpentine + magnetite + H2(aq)�

Ferroan brucite => magnetite + H2 + H2O�

Hansen et al. (2005) summarized the most significant succession of reactions involved in listwanitization:

Serpentine + ∕− olivine + ∕− brucite => serpentine + magnesite => talc + magnesite => quartz + magnesite�

These reactions illustrate the diversity of processes potentially at work during listwanitization. Serpentine, chlo-
rite, Mg carbonate, and talc are the major compounds of the reactions, in agreement with the spectral analysis 
results presented in Figures 16–19. They also show that the strength of the yellow-orange ridge in the Ladon basin 
via listwanitization could be explained if quartz is present at Sites A-B.

6.3.  Occurrence of Quartz

Quartz is an end product of alteration of olivine, pyroxene, plagioclase, and serpentine. Due to its flat spectral 
shape in the CRISM range, its detectability relies on its high reflectance compared to many other minerals in this 
range. Its presence cannot be demonstrated; nevertheless, it could be present in the white bright terrains in greater 
proportion but anywhere else in the altered rocks.

6.4.  Consistency Between the Spectral Absorptions, Spectral Parameters, and K-Mean Analysis

Comparison between the CRISM spectral parameters and the K-mean analysis of the CaSSIS image shows that 
although the whole surface area covered by the CRISM cube is covered by ferric oxides at the CaSSIS scale, this 
widespread distribution goes with variations that depend on topography.

The interpretations based on the spectral absorptions make it possible to interpret the spectral parameters further. 
Spectral absorption analysis shows that olivine and pyroxenes are found throughout the cube, whereas the spectral 
parameters indicate that pyroxenes are absent in the yellow-orange area (Figure 11c). This apparent conflict is 
explained by our approach, in which the broad spectral variations of olivine and pyroxene are included in the 
spectral ratio denominator. This made it possible to separate their spectral contribution from the contribution of 
the narrow absorptions of alteration minerals in the same spectral range. The broad absorption of olivine occurs 
around 1 μm (Figure 14), far from the major absorption bands of alteration minerals, which start at ∼1.4 μm and 
mainly occur after 1.9 μm. Olivine is therefore not masked by the alteration mineral absorptions. In the contrary, 
the broad absorption of pyroxenes occurs in the range 1.5–2.8 μm, covering most of the area where alteration 
minerals sign in the CRISM range. LCPINDEX2 and HCPINDEX2 are exclusively based on the band centers, 
making these minerals detectable.

Figure 16.  Comparison between the spectra of the yellow-orange terrain at Site A and the laboratory spectra of serpentinite. Details on the library spectra are found in 
Bishop et al. (2002) (lizardite C53/JB526), Bishop, Dyar, et al. (2008) (antigorite JB559), and Bishop, Lane, et al. (2008) (chrysotile JB732). The lower part of the plot 
shows absolute reflectance spectra, and the upper part shows ratioed reflectance spectra using the dune field region of interest as the denominator. The type serpentine 
I/F spectrum selected in the Minerals Identified through CRISM Analysis (MICA) library (Viviano-Beck et al., 2014) is in red. The unratioed serpentine I/F spectrum 
in the middle of the plot is the same as the one at the bottom of the plot except that the amplitude of reflectance was stretched four times and the spectrum was offset 
for easier comparison with the ratioed Ladon spectra. The Compact Reconnaissance Imaging Spectrometer for Mars IR data in the range 1,002–1,047 nm and around 
1,650 nm may contain erroneous information (S. L. Murchie et al., 2009) and were removed. The mobile average box size for the Ladon spectrum is three channels.
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The PFM composite image showing the yellow-orange areas in blue (Figure 12c) may be interpreted either as Fe/
Mg smectite or Mg carbonate. Spectral analysis could not reveal smectite absorption features; however, Figure 18 
shows that Mg carbonates are likely present. We therefore interpret the blue color of the yellow-orange areas on 
the PFM image as a plausible contribution of Mg-carbonates rather than smectites (Table 3).

Figure 17.
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The water detected by the BD3000 spectral parameter (Figure 12d) may be 
explained in the yellow-orange areas by the incorporation of water into the 
Mg carbonate structure, leading to hydromagnesite (Table  3) of formula 
Mg5(CO3)4(OH)2 ꞏ 4 H2O. The BD3000 parameters indicate that the white 
terrain also contains hydrated minerals. This seems to conflict with our 
preferred interpretation for the composition of the white terrain at Site C, 
which from the spectral absorptions would expose minerals from the kaolin 
group. However, the absorption at 1.8 μm (Figure 20) at Site C may reconcile 
the spectral parameters with the spectral absorption analysis, if it testifies 
to the exposure of alunite, KAl3(SO4)2(OH)6 in addition to the kaolin group 
minerals. These interpretations are fragile and ascertaining the composition 
of the white alteration level will need an examination of similar  terrain in 
other CRISM cubes.

6.5.  Comparison Between the Linear Ridges and Some Terrestrial 
Listwanite Ridges

In order to evaluate further the plausibility that the yellow ridges are list-
wanite, we compared the spectra of sites A and B with the spectra of some 
terrestrial listwanite ridges measured by the Terra/Advanced Airborne Ther-
mal Emission and Reflection Radiometer (ASTER) multispectral instru-
ment. Five ASTER channels frame the wavelength of the strongest carbonate 
absorption, at ∼2.3 μm, that can be found in the near-infrared range <2.5 μm. 
These channels are located at 2.165 ± 0.02, 2.205 ± 0.02, 2.260 ± 0.025, 
2.330 ± 0.035, and 2.395 ± 0.035 μm. ASTER surface reflectance of two 
ophiolite sites where listwanitization occurred are shown in Figure 23. Four 
other sites are shown in Section 4 in Supporting Information S1.

Listwanite at the six ophiolite sites is characterized by a blue spectral slope 
between 1.656 and 2.167 μm, and clear absorption at 3.33 μm (Figure 24). 
After continuum removal, the CRISM spectra of the sites A and B appear 
close to the ASTER spectra, confirming the plausibility that the ridges have 
a listwanitic composition.

6.6.  Significance of the White Terrain

Olivine and pyroxene were detected in the CRISM data; however, it is likely 
that plagioclase is also present. It was shown that the abundance of olivine 
and pyroxene relative to plagioclase in mafic or ultramafic rock hampers 
plagioclase detection (see a discussion in Viviano-Beck et  al.,  2017). 
Listwanitization may include crystallization of kaolinite (e.g., Gahlan 
et al., 2022) but it has not been frequently reported. There is also no geomor-
phological evidence from the HiRISE and CaSSIS images that the white and 
yellow-orange terrains share a common genesis. We suggest that plagioclase 
dissolution (Casey et al., 1991) by acidic water was involved in the formation 
of the detected kaolinite via the reaction (after Wawersik et al.  (2001) and 
Hangx and Spiers (2009)):

Figure 17.  Comparison between the spectra of the yellow-orange terrain at Site A and the library spectra of chlorite. Details on the library spectra are found in Bishop, 
Lane, et al. (2008) (chamosite JB739, Clinochlore JB738). The lower part of the plot shows absolute reflectance spectra and the upper part shows ratioed reflectance 
spectra using the dune field region of interest as the denominator. The type chlorite I/F spectrum selected in the Minerals Identified through CRISM Analysis (MICA) 
library (Viviano-Beck et al., 2014) is in red. The unratioed chlorite I/F spectrum in the middle of the plot is the same as that at the bottom of the plot except that the 
amplitude of reflectance was stretched four times and the spectrum was offset for easier comparison with the ratioed Ladon spectra. “sh” stands for “shoulder.” The 
Compact Reconnaissance Imaging Spectrometer for Mars IR data in the range 1,002–1,047 nm and around 1,650 nm may contain erroneous information (S. L. Murchie 
et al., 2009) and were removed. The mobile average box size for the Ladon spectrum is three channels.

Figure 18.  Comparison between the spectra of the yellow-orange terrain 
at Sites A and B and library spectra of hydromagnesite (CRB208, RELAB 
spectral library, R. E. Milliken et al., 2016). The type Mg-carbonate I/F 
spectrum selected in the Minerals Identified through CRISM Analysis (MICA) 
library (Viviano-Beck et al., 2014) is in red. The yellow lines correspond to 
hydromagnesite absorptions. The wavelengths of the deepest absorptions at 
Sites A and B are indicated but do not significantly emerge from the spectral 
noise and might be noise as well. The Compact Reconnaissance Imaging 
Spectrometer for Mars IR data in the ranges 1,002–1,047 nm, 2,800 nm, and 
around 1,650 and 2,800 nm may contain erroneous information (S. L. Murchie 
et al., 2009) and were removed.
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Anorthite + water => Ca2+ + kaolin polymorph�

Although kaolinite is the only stable kaolin phase (De Ligny & 
Navrotsky, 1999), by order of increasing temperature, the forming polymorph 
would be halloysite (<100°C), then kaolinite, and dickite until ∼300°C 
(Bauluz, 2015; Zotov et al., 1998). Dickite would be the most adapted to the 
hydrothermal conditions of listwanitization and yellow-orange terrain forma-
tion. Slow conversion of halloysite and dickite to kaolinite might result in 
kaolinite being the main polymorph observed today.

Ece et  al.  (2013) proposed a mechanism for the development of a 
kaolinite-alunite facies from the dissolution of feldspar and volcanic glass 
in low to intermediate hydrothermal conditions at low pH. This model may 
be a starting point to investigate the possible coexistence of kaolin group 
minerals and alunite at Site C, as well as other areas on Mars where similar 
white terrain is identified.

6.7.  Listwanitization in the Regional Framework

The age of Units 1 and 2, from late Hesperian to early Amazonian, is younger 
than expected from broader scale mapping by Irwin and Grant  (2013), in 
which these units (HNb2 and Hb3) are ascribed an upper Noachian to early 
Hesperian age. Weitz et al.  (2022) reported on fluvial erosion and deposi-
tion of light-toned layered deposits of similar age in many sites of the Ladon 
basin west of our study area. These layered deposits, which include smectites 
and other hydrated minerals, were not observed in our study area. However, 
fluvial activity may have provided the source or part of the source of water 
required for serpentinization, carbonation, and kaolinization. An older 
groundwater reservoir might also have been tapped (Grant & Parker, 2002).

The results presented here corroborate other studies that advocate a late 
magmatic insurgence in the Ladon basin. Following the experimental results 
obtained by Luzzi et al. (2021), the general radial and concentric distribution 
of grabens centered at the western part of the basin, as well as their T and 
Y-shaped junctions, would testify to such a late magmatic activity causing 
oblate extension and diffused fissure eruptions. Similarly, the abundance of 
FFCs in the close vicinity of the East Ladon study area (Figure 2) would 
testify to the nearby emplacement of magmatic bodies, whether sills or lacco-
liths, which could share a common magmatic source with Units 1–3 in this 
work.

As a hydrothermal process usually involving a huge volume of rock, listwanitization was found on Earth to influ-
ence the crustal magnetic record. In many environments, hydrothermal activity tends to suppress magnetization 
(Choe et al., 2021; Szitkar, Dyment, Choi, & Fouquet, 2014). In ultramafic rocks, in contrast, the titanomagnetite 
formed during the serpentinization process tends to strengthen crustal magnetization (Szitkar, Dyment, Fouquet, 
et al., 2014). Listwanitization then attenuates the magnetization (Tominaga et al., 2017). Quesnel et al. (2009) 
insist on the role of serpentinization as a pre-Noachian source of Martian crustal magnetization. The eastern 
Ladon basin, located in a region of the highlands where strong magnetic anomalies are observed, is a magnetic 
low compared to its surrounding toward West, North, and East (Langlais et al., 2019). Late magmatic activity 
below the FFC, in the absence of a magnetic field, and listwanitization in East Ladon might be causes of partial 
crustal demagnetization in this area.

Listwanite is a major source for some metals on Earth, in particular native Au and Cr but also, depending on the 
geological context, other rare (As, Hg, and Ni) and base (Cu, Pb, Sb, and Zn) metals as well as sulphides (Ash & 
Arksley, 1990; Azer, 2013; Ferenc et al., 2016; L. Zhang et al., 2015; Qiu & Zhu, 2015; Sherlock & Logan, 1995; 
Xiangzhen et al., 2009). The occurrence of these deposits is closely related to the geochemical reservoir tapped by 

Figure 19.  Comparison between the spectra of the yellow-orange terrain 
(Sites A and B) and library spectra of talc (GDS23, splib07a spectral library, 
Kokaly et al., 2017). In red is the type talc I/F spectrum selected in the 
Minerals Identified through CRISM Analysis (MICA) library (Viviano-Beck 
et al., 2014). The yellow lines correspond to the talc absorptions. The 
Compact Reconnaissance Imaging Spectrometer for Mars IR data in the ranges 
1,002–1,047 nm, 2,800 and around 1,650 and 2,800 nm may contain erroneous 
information (S. L. Murchie et al., 2009) and were removed.
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the ultramafic magmas, but this diversity and their economic interest suggest that East Ladon might be a priority 
target to check in a search for mineral resources on Mars.

6.8.  Proposed Geologic Model

The geological section of Figure 25 is an interpretative synthesis of our findings. In the first order, olivine and 
pyroxene characterize all the mapped geological units. This is reflected in all the rocks having low albedo. Unit 
1 includes the yellow-orange terrain in which serpentinite, chlorite, and perhaps carbonate and talc are found, as 
well as the kaolin minerals and perhaps alunite in the white terrain. The red structures account for the silicified 
listwanite ridges.

The age of alteration is constrained by the following observations:

•	 �The yellow and white layers observed on the graben walls are restricted to Unit 1, they formed, therefore, 
after Unit 1.

•	 �Because the yellow terrain is interpreted to be of hydrothermal origin, it needs to be connected to a crustal 
warming source. The warming source is interpreted to be Unit 3 rather than in the deeper crust for two reasons. 
First, the graben walls do not show any layer perturbation at a depth below the yellow and white layers nor any 

Table 4 
Summary of the Spectral Absorptions Used in This Work for Mineral Identification

Mineral Site Absorption band centers (μm)

Spectral shape similarity

In the range 
1–2.6 μm a

In the range 
2.1–3.9 μm a

Serpentine A 1.41 2.02 2.09 2.32 2.51 Reasonably 
similar

B 1.41 2.02 2.09 2.32 2.51 Reasonably 
similar 
until 
2.3 µm

Chlorite A 1.41 2.02 2.32 2.51 2.58/2.59 Reasonably 
similar 
until 
2.3 µm

B 1.41 2.02 2.09 2.32 2.51 2.58/2.59 Reasonably 
similar

Mg-carbonate A 2.31 2.51 3.42/3.43 3.83/3.86 Reasonably 
similar

B 2.31 2.51 3.42/3.45 3.83/3.86

Talc A 2.00/2.02 2.08/2.09 2.31 Reasonably 
similar 
until 
2.3 µm

B 2.00/2.02 2.08/2.09 2.31 Reasonably 
similar 
until 
2.3 µm

Kaolin 
minerals

C 1.39–
1.41

1.92 2.17–2.21 2.45 2.50 Reasonably 
similar 
after 
1.7 µm

Alunite? C 1.80

Note. Band center differences between library spectra and Compact Reconnaissance Imaging Spectrometer for Mars detections are indicated as a fraction, with library 
spectrum center as the numerator and the detected center as the denominator. The library spectra are those shown in Figures 16–20.
 aOutside of the degraded spectral channels as identified by Murchie et al. (2009) and Seelos (2016a, 2016b).
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Figure 20.
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Figure 20.  Comparison between the spectra of the white terrain (Site C) and library spectra of kaolinite (CM3, USGS spectral library, Kokaly et al., 2007), dickite 
(H-14, RELAB spectral library, R. E. Milliken et al., 2016), and halloysite (JB-JLB-A47, RELAB spectral library, R. E. Milliken et al., 2016). The lower part of the plot 
shows absolute reflectance spectra and the upper part shows ratioed reflectance spectra using the dune field region of interest as the denominator. The type kaolinite 
I/F spectrum selected in the Minerals Identified through CRISM Analysis (MICA) library (Viviano-Beck et al., 2014) is in red. The middle kaolinite I/F spectrum is 
the same as the one at the bottom spectrum except that the amplitude of reflectance was stretched four times and the spectrum was offset for easier comparison with the 
ratioed Ladon spectra. The absorption bands centered at 2,450 and 2,500 nm are apparent at Site C after continuum removal. The Compact Reconnaissance Imaging 
Spectrometer for Mars IR data in the range 1,002–1,047 nm and around 1,650 nm may contain erroneous information (S. L. Murchie et al., 2009) and were removed. 
The mobile average box size for the Ladon spectrum is seven channels.

Figure 21.  (a) Context Global mosaic version beta01 from Murray Lab (Dickson et al., 2018) used for the enlargement of 
the geologic mapping of the East Ladon study site; (b) enlarged geological map. The black box in panel (b) delimits the 
geological map shown in Figure 6. Unit numbers increase inversely to their relative age; letters indicate distinct outcrops for 
the same unit.
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Figure 22.  Model age determinations and counting areas for (a) Unit 3, (b) Unit 2, and (c) Unit 1 from the geologic map in 
Figure 21. The black and red fits represent the cumulative production function and the Poisson probability density function, 
respectively. Panels above the age plots show the randomness analysis results.

 21699100, 2023, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JE

007223 by C
ochrane France, W

iley O
nline L

ibrary on [31/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Planets

MÈGE ET AL.

10.1029/2022JE007223

30 of 38

clue that would suggest interactions with a warming source depth. Unit 2 is very thin; as a consequence, the 
warming source is likely to be Unit 3. Second, mapping has revealed that hydrothermal alteration frequently 
followed portions of the rims of the largest craters in the study area, suggesting that some of the fluids 
passively followed the existing structures. As a corollary, the driving pressure during the propagation of the 
hydrothermal fluids was low, though still high enough to reopen fractures not favorably oriented with respect 
to the orientation of the principal stresses. This is consistent with fluid flow in response to a nearby, local 
event, such as the emplacement of the overlying Unit 3, but less likely in the case of a deep, regional event, 
such as magma chamber intrusion.

•	 �Such a connection between Unit 3 and hydrothermal alteration underneath implies that Unit 3 once covered 
the whole area above the yellow and white units. The lobate fronts of Unit 3 are more likely erosional than 
pristine. This hypothesis is supported first by the yellow ridges themselves. There are few geologic processes 
that generate similar linear ridges up to tens of meters high in the open air. The most frequent are subglacial 
ridges, which are here not relevant due to the absence of observation of a glacial land system. Second, the 
geomorphology of Unit 1 is erosional, exemplified by the geomorphology of many rimless impact craters. 
Third, the effusion temperature of ultramafic flows is in the range 1600–1800°C. At the contact area with the 
ground, ultramafic magma temperature may be as high as 1200°C, which is so efficient in warming the subsur-
face that the ground can be thermally eroded by meters to hundreds of meters (Huppert & Sparks, 1985). We 
conclude that the emplacement of Unit 3 is a plausible trigger of hydrothermal activity, should groundwater 
be present at depths of tens of meters.

Figure 23.  ASTER multispectral scenes and Maxar images of listwanite ridges on Earth, located at (a) Sartohay, Xinjiang Proince, China, and (b) Um Khasila, Eastern 
Desert of Egypt. Left: ASTER scene, color composite of bands 8-3N-1 (2.330 ± 0.07 μm, 30 m/pixel; 0.820 ± 0.04, 15 m/pixel; 0.560 ± 0.04 μm; 15 m/pixel). The 
arrows point to the areas where spectral measurements were done. Middle: Location of the spectral measurements shown in Figure 24. Right: High-resolution views of 
the listwanite ridges, from Google and ©2022 Maxar Technologies.
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Figure 24.
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•	 �Unit 3 is cut by the Y-shaped graben, showing that the graben formed after Unit 3.
•	 �The structural control of the silicified ridges by a stress field consistent with the formation of one of the 

Y-shaped graben branches suggests that from a mechanical perspective, hydrothermal alteration and graben 
formation were coeval.

From this analysis, the emplacement of Unit 3 in a shallow groundwater-bearing crust was coeval with hydrother-
mal activity and yellow-orange terrain alteration, with subaerial weathering of the warmed but cooler ground-
water and white terrain formation and with graben opening. Figure 26 illustrates these mechanisms. Dating of 
Unit 3 (Figure 22a) indicates that these events occurred during the early Amazonian. Olivine and pyroxene from 
the rocks in which groundwater was circulating would be mobilized by hydrothermal activity, providing iron, 
magnesium, calcium, and silica required for serpentinization and listwanitization. Plagioclase would also contrib-
ute, but being a source of calcium and aluminum too, its dissolution would be a key to the formation of kaolin 
minerals. Plagioclase subaerial weathering, as well as carbonate formation in the listwanite, requires acidic water 
and therefore dissolved CO2 in the H2O groundwater reservoir. The contribution of atmosphere to the CO2 and 
H2O supply would have been fostered by rainfall (e.g., Weitz et al., 2022), but interactions with the subsurface 
would have been hampered by the flowing or cooling sheet of ultramafic composition.

6.9.  Comparison With Other Serpentine Detections on Mars

Serpentinization has been reported at several places in a diversity of environments, including Nili Fossae, Syrtis 
Major, along the Claritas Rise—Thaumasia highlands—Coprates Rise arc south of Valles Marineris, in crater 
ejecta and central peaks (Brown et al., 2010; Ehlmann et al., 2009, 2010, 2011; Viviano-Beck et al., 2017; Viviano 
et al., 2013), and between the Hellas and Isidis basins (Bultel et al., 2015).

In these works, serpentinite detections have been commonly reported to be associated with carbonates, and some-
times chlorite and talc. Several differences exist, however, with the geologic environment of our study area in 
East Ladon. These works found that serpentinization and carbonation occurred between the pre-Noachian and 
early Hesperian; smectites were commonly found to be associated with the serpentines and carbonates, as well as 
low-grade metamorphic minerals (such as zeolites, prehnite); the correlation with tectonic events was loose. The 
mineral assemblages found by Brown et al. (2010) and Viviano et al. (2013) are the closest to those identified 

Figure 24.  Comparison between the Compact Reconnaissance Imaging Spectrometer for Mars spectra at Sites A and B, representative of the yellow-orange terrain, 
and ASTER spectra of samples of six listwanite ridges (BI1, BI2: Bir Umq ophiolite, Arabia; LU1, LU2: Luobusa, Tsangpo suture, Tibet; SA1, SA2: Sartohay 
ophiolite, West Junggar suture; SE1, SE2: Semail ophiolite, Oman; UM1, UM2: Um Khalisa ophiolite, Eastern Desert, Egypt; and WA1, WA2: Wadi Abu Fas ophiolite, 
South Eastern Desert, Egypt). The continuum between 0.560 and 2.400 μm was removed. The coordinates of the ASTER pixels are given in Section 4 in Supporting 
Information S1.

Figure 25.  Proposed geologic cross-section of the East Ladon study area. Location in Figure 5. Topography is from Context digital terrain model. Mineralogy is from 
CRISM data analysis. The location of the linear ridges (in red) is indicative.
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here. None of these works, however, reported any association between these minerals and linear ridges similar to 
those found in East Ladon.

7.  Conclusion
In the past, most of the Ladon basin infilling has been interpreted as sedimentary deposits, such as aqueous sedi-
ments, evaporites, or duricrust (Irwin & Grant, 2013). However, Irwin and Grant (2013) did not exclude the presence 
of volcanic sheets interbedded within the sedimentary sequence and more probably in the upper part of the succes-
sion. The high effectiveness of color composite CaSSIS data together with the general framework given by CTX 
mosaics, the detailed stratigraphic relationship revealed by HiRISE data and the compositional information obtained 
from spectral analyses on CRISM data allowed us to shed light on the later geological evolution of the basin, in 
which syntectonic upper Hesperian to lower Amazonian volcanic and hydrothermal activity plays a prominent role.

Listwanitization is reported here for the first time as a mechanism that potentially operated on Mars. This process 
satisfactorily accounts for the mineralogical, geomorphological, structural, and topographic diversity of the 
study area in East Ladon. Other listwanitized regions probably exist and shall be identified in further investiga-
tions, increasing the variety of potential hydrothermal targets on Mars for future missions (e.g., Schulze-Makuch 
et al., 2007).

Serpentinization is one of the most considered processes potentially involved in the emergence of life (e.g., 
Lang & Brazelton, 2020; Stamenković et al., 2019), as a major source of energy through the supply of hydro-
gen, through the genesis of methane, the release of other elements of abiogenic origin (Russell et al., 2010), and 
through the genesis of highly reducing and high-pH fluids during exothermic serpentinization-associated reac-
tions (Schrenk et al., 2013).

Quesnel et al.  (2009) and Chassefière et al.  (2013, 2016) revealed the Noachian potential of serpentinization, 
providing conditions prone to the emergence of life at that time. In Ladon, serpentinization occurred much later, 
in a fully different context. A strong requirement for life to emerge is the duration and stability of favorable 
conditions. Serpentinization provides environments shielded from climate instabilities, which are thought to have 
been dramatic in the Martian past (Laskar et al., 2004). However, the situation of life in the early Amazonian is 
unknown and without better constraints on the duration of activation of the hydrothermal cells generated in the 
serpentine system in Ladon and the difficulty of abiogenic carbon accessibility to potential living organisms in 
serpentine systems (Lang & Brazelton, 2020; Proskurowski et al., 2008; Schrenk et al., 2013), the likelihood of 
Amazonian life in the Ladon basin is far from being demonstrated.

Figure 26.  Elements for a volcanic-hydrological model of mineral formation in East Ladon in relation to its extensional tectonic setting. In this model, Unit 3 is fed 
by a dike. All the minerals identified in the CRISM cube, and probably some undetected, form in response to the emplacement of the Unit 3 ultramafic volcanic flow. 
The heat gradient, which increases upward, generates high pressurization at the top of the aquifer, resulting in serpentinization and listwanitization (yellow-orange 
terrain, silicified ridges). At a lower level, lower temperature, and lower water pressurization, kaolin polymorphs form by the dissolution of plagioclase (white terrain). 
Modulated by the local forming conditions, halloysite would form low in the aquifer (lower temperature), kaolinite at a shallower depth, then dickite at the highest 
level and already in the hydrothermal environment. Due to the metastability of halloysite and dickite, kaolinite might be the main mineral remaining today. The 
yellow-orange and white terrains are exhumed by erosion of Unit 3. Aquifer depth is unconstrained.
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Overall, this work emphasizes the effectiveness of CaSSIS color image analysis in the geologic interpretation 
of the surface of Mars. With the similar ∼6 m pixel size, CTX topography derived from stereoscopic image 
processing was found to be well adapted to CaSSIS color image interpretation in areas where CaSSIS stereo-
scopic image pairs are not available. CaSSIS has a huge potential for mapping the differences in the composition 
of large surface areas. It was shown to be helpful in identifying primary rocks versus alteration products with the 
capability of separating ferrous from ferric iron. Furthermore, the narrow ridges identified in the Ladon sites, 
also not identified before, had been identified using HiRISE images only; however, without the much broader 
coverage of the CaSSIS color images, which highlights their huge distribution, their resistance to erosion, and 
their unusual yellow-orange color, their significance as revealed in this study would have been much more diffi-
cult to find. The CaSSIS images provide a comfortable framework for the interpretation of CRISM data, and, 
having channels overlapping the HiRISE color channels, expand the HiRISE capabilities to larger surface areas 
and enhance scientific return.

Data Availability Statement
CRISM TER, CRISM MTRDR, CTX, and HiRISE RDR data are available in the NASA Planetary Data System 
(A. McEwen,  2007; Malin,  2007; Seelos,  2016a,  2016b, respectively). The CaSSIS calibrated data (https://
doi.org/10.5270/esa-da0ic0t) are available in the ESA Planetary Science Archive. The splib07a, RELAB, and 
MICA spectral libraries are, respectively, available at USGS (Kokaly et al., 2017), in the NASA Planetary Data 
System (R. Milliken, 2019) and from Viviano-Beck et al. (2014). The ASTER L2 Surface Reflectance VNIR and 
Crosstalk Corrected SWIR V003 data are available at NASA EOSDIS Land Processes DAAC (NASA/METI/
AIST/Japan Space Systems and U.S./Japan ASTER Science Team, 2001).
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